Studying the Costs and Benefits of Rust, Compared to C

Blinded for Submission

Motivation C is a popular programming language, but ex-
pert opinions and empirical evidence suggest that it promotes
insecure code [3,7]. One reason for this is C’s lack of memory
safety, which means that bugs involving memory use often
constitute exploitable vulnerabilities [5, 8].

Recently, programming languages such as Google’s Go [1]
and Mozilla’s Rust [2] have been developed in an explicit at-
tempt to provide a fast, low-level, but type- and memory-safe
language. Rust is notable in that it does not require garbage
collection to ensure temporal memory safety. Garbage col-
lection can produce unacceptable delays and add significant
memory overhead [4], which precludes its use in resource-
constrained and/or ultra-high performance environments. On
the other hand, Rust’s type system strictly controls how heap-
allocated memory can be used: An ownership discipline re-
stricts many common forms of aliasing, and proving bounded
lifetimes may require additional annotations. Manual mem-
ory management is already challenging, compared to using
garbage collection, and Rust’s type system makes it moreso.
Indeed, there is a temptation—even a need—for program-
mers to escape the ownership and lifetime discipline by using
Rust’s unsafe blocks, thereby threatening safety [6].

We wonder: Can Rust emerge as a safe alternative to C?
The answer depends on whether developers who usually pre-
fer C can switch to Rust with a limited impact on development
time, effort, and code efficiency while still achieving an in-
crease in security.

Pilot Study To understand this tradeoff, we designed a two-
phase study in which participants perform at-home refresher

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

USENIX Symposium on Usable Privacy and Security (SOUPS) 2019.
August 11-13, 2019, Santa Clara, CA, USA.

tasks in both languages, then are randomly assigned to one lan-
guage for a main, in-person programming task. We manually
assessed the resulting code in terms of functional correctness,
security, and performance. The main programming task —
a three-part parallelized sorting problem — was selected to
expose fault lines where complying with Rust’s type system
may prove difficult, but where using C (or unsafe blocks in
Rust) may result in exploitable memory management errors.

For the pilot study (n=5), we recruited university students
with limited classroom experience with both C and Rust. The
main portion of the study took 90 minutes, including an exit
survey about the experience, and participants were paid $75.
The study was approved by the University of Maryland IRB.

Observations Although data analysis is ongoing, we
present some preliminary observations. First, no participant
completed all three parts of the main task, and only two par-
ticipants, both using Rust, managed to complete the first part.
We noticed that participants spent a large amount of time
customizing the environment, worrying about the remaining
time, refreshing background concepts, and rereading and un-
derstanding the specification for the tasks, despite it being
reviewed before the programming portion started. We note
that the above problems could relate to either the design of
the study or difficulties in using Rust or C, or both.

Next steps Results from the pilot will inform updates to
the study design. We hope that by changing the second phase
to remote, self-administered participation (via Docker), we
can collect almost as much data about participants’ work
processes while reducing stress and allowing self-pacing. We
also plan to revisit the first phase to see if we can refresh
additional background concepts more effectively. We are also
considering how to restructure the main task to be shorter
while maintaining enough complexity to expose challenges
in both languages.

References

(1]
(2]
(3]

Go.
The rust programming language.

Dan Grossman, Michael Hicks, Trevor Jim, and Greg
Morrisett. Cyclone: A type-safe dialect of c. C/C++
Users Journal, 23(1):112-139, 2005.

Matthew Hertz and Emery D. Berger. Quantifying the per-
formance of garbage collection vs. explicit memory man-
agement. In Proceedings of the 20th Annual ACM SIG-
PLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA °05, 2005.

Trevor Jim. Once more unto the breach: C/c++ must die,
Jul 2016.

(6]

(7]

(8]

Alex Ozdemir. Unsafe in rust: The abstraction safety con-
tract and public escape. https://cs.stanford.edu/
~aozdemir/blog/unsafe-rust-escape/.

Andrew Ruef, Michael Hicks, James Parker, Dave Levin,
Michelle L Mazurek, and Piotr Mardziel. Build it, break
it, fix it: Contesting secure development. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 690-703. ACM, 2016.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song.
Sok: Eternal war in memory. In 2013 IEEE Symposium

on Security and Privacy, pages 48—62. IEEE, 2013.

https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-escape/
https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-escape/

